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A New Kind of Composite Phase Change 
Envelope for ZNE Buildings

 Objectives
 Reduce and shift electricity demand to off-peak times
 Reduce utilities capital investment 
 Contribute to zero net energy buildings

 Strategy
 Use microencapsulated phase change materials (PCM) 

 Increase thermal mass of buildings
 Absorb heat during the day and release it at night

 Engineering needs
 Material processing

 avoid capsule aggregation, flotation, breakage, durability
 Predict and measure thermomechanical properties of PCM-mortar 

composites
 Predict thermal response of the PCM-mortar composite building envelope
 Estimate energy and cost savings in buildings
 Develop design tools and design rules for deployment

10 m
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 Predict and measure thermomechanical 
properties of PCM composites

Effective specific heat of PCM microcapsules and composites
Effective thermal conductivity 
Effective compressive strength 
Effective Young’s modulus
Effective thermal deformation coefficient
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Specific heat of PCM

 Microencapsulated PCM specific heat
 Measured via DSC (scan rate: 1oC/min)

 Observations
 Multiple peaks due to multicomponent PCMs
 Area under the curve is the latent heat of fusion
 Slight difference if the sample is heated or cooled
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PCM Database

 A database of over 500 PCMs, including over 250 commercially 
available PCMs, was compiled
 Available via our lab webpage as an Excel file: 

http://seas.ucla.edu/~pilon/downloads.htm#section4
 Also added to the Wikipedia article on phase change materials: 

https://en.wikipedia.org/wiki/Phase-change_material
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Effective Thermal Conductivity: Simulations 

 PCM-cement composites  Felske model*

 Results
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Effective Thermal conductivity: Experiments

 Sample composition
 Cement type

 Ordinary Portland cement type I
 Water/cement ratio

 0.45
 Microencapsulated PCM 

(MPCM24D)
 Tpc = 24oC
 17-20 m in diameter
 Volume fraction c+s: 0 to 30%

 Quartz grains (optional)
 150-600 m in diameter
 Added such that c+s + q = 55%

 Aging
 aged in humid air for 24 hours 
 aging in air for 28 days 

 Observations
 keff was independent of T
 Adding MPCM reduced keff

 Excellent agreement with 
Felske model
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Effective Compressive strength: Experiments

 Observations
 Strength depends on “weakest link” 

 PCMs inclusions 
 reduce strength
 Weaker than cement paste

 Quartz inclusions 
 do not increase strength
 Cement paste weakest link

 Limits how much PCM can be added 
to concrete
 With 20% PCM, still above 30 MPa 

 Minimum strength specified by ACI 
318 for structural concrete*

28 Days
PCM Mortar
Quartz Mortar

0.0 0.2 0.4 0.6
Inclusion Volume Fraction, Φi

0

20

40

60

80

100

C
om

pr
es

si
ve

 S
tr

en
gt

h 
(M

Pa
)

8
*American Concrete Institute, Building code requirements for structural concrete, 2008, Farmington Hills, MI, USA.



FCCBCC
L

Randomly distributed
LL Displacement (nm) Displacement (nm)

30

25

20

15

10

5

0

80
70

60
50

40

30
20

10
0

Effective elastic moduli: Simulations

 Numerical simulations of elastic deformation

 Conclusions
 Effective Young modulus were identical for 

 BCC and FCC packing of monodisperse microcapsules
 Randomly distributed polydisperse microcapsules

 Identified effective medium approximations for the effective moduli
 Hobbs model (1971) for Em  Es  Ec

 Garboczi and Berryman model (2001) for Em < Ec
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Effective Mechanical Properties: Experiments

 Experimental results

 Conclusions
 Adding PCM degrade the elastic moduli and compressive strength
 One can compensate by adding stiff quartz (or sand) inclusions
 Hobbs model agree well with experimental data
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Effective Thermal Deformation Coefficient
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 Predict thermal response of the PCM-
mortar composite building envelope
 Estimate energy and cost savings in 

buildings
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Design and Optimization of PCM-composite 
building envelope

 Typical one story single-family home
 Average floor area in Western U.S. in 2013: 2534 ft2 (241.5 m2)*

 Exterior wall surface areas were obtained from HEED software
 Heat transfer through glazing and roof surfaces was not considered
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* https://www.census.gov/construction/chars/highlights.html
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Annual weather conditions

 Outdoor temperature and solar irradiation in Los Angeles

 Similar simulations for San Francisco
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Effect of ϕc - South Wall

 Parameters
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Effect of ϕc - South Wall

 Parameters
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Effect of ϕc - South Wall

 Parameters
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Effect of ϕc - South Wall

 Parameters
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Effect of ϕc - South Wall

 Parameters
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Effect of ϕc - South Wall

 Parameters
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Effect of Phase Change Temp. in Los Angeles

 Parameters

 Optimum phase change temperature Tpc ~ Tin
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Effect of Phase Change Temp. in San Francisco

 Parameters

 Optimum phase change temperature Tpc ~ Tin
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Summary

 Annual energy and cost savings maximized when phase change 
temperature is near the desired indoor temperature

 Microencapsulated PCM are most beneficial when the outdoor 
temperature oscillates around the desired indoor temperature
 Better in Los Angeles than in San Francisco

 Adding microencapsulated PCM to the building envelop can 
significantly reduce the need for cooling in the hotter months in CA

 The effects of microencapsulated PCM on the energy needs for 
heating and the associated cost savings were small in CA

 Annual energy reduction and cost savings depend on wall orientation
 Larger for the South- and West-facing walls in CA
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 Develop design rules and design tools 
for deployment

Modified admittance method for PCM
Figure of merit for PCM-composites
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Admittance method

 The admittance method
 developed as a computationally simple method to assess the transient 

thermal response of buildings to a sinusoidal sol-air temperature
 The heat flux and temperature at the inner and outer wall surfaces can be 

related to the sol-air temperature via decrement factors and time lags*,+
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Diurnal energy flux reduction predictions

 The admittance method was adapted to consider PCM melting to
 Rapidly evaluate the thermal performance of a PCM-composite envelope
 Reduce computational cost significantly 
 Simplify implementation in user-friendly design software

 Facilitate the design and evaluation of the energy benefits of PCM-
composite in buildings
 OPAQUE

 http://www.energy-design-tools.aud.ucla.edu/opaque/request.php
 HEED: Home Energy Efficient Design

 http://www.energy-design-tools.aud.ucla.edu/heed/
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Figure of merit for PCM-mortar composites

 Specimens
 Cylindrical mold: PVC canisters 
 Cement paste 
 Volume fraction of MPCM: 0-30%

 Sensors
 Two thermocouples located 

along axis (r = 0)
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Energy indicator

 Energy indicator
 Definition for heating or cooling

 Units 
 oC·hr

 Easily measurable
 Independent of heating and 

cooling rates
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Correlation between EI and Er

 Results
 For a 4” thick concrete wall for different PCM volume fractions

 Conclusions
 The energy indicator for a cylinder correlates with daily energy saving
 Advantages of this FOM 

 accounts for combined effects of keff, (cp)eff, hsf, c+s, dimensions
 Test can be easily performed with a small amount of material
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Conclusion

 Master material processing of concrete with MPCM
 No aggregation, no breakage, durable

 Thermomechanical properties of PCM-mortar composites
 Effective specific heat of PCM microcapsules and composites
 Effective thermal conductivity 
 Effective compressive strength
 Effective Young’s modulus 
 Effective thermal deformation coefficient

 PCM-mortar composite building envelope
 Reduce cooling needs in summer
 Saving to ratepayers
 Better in Los Angeles than in San Francisco

 Develop design tools and design rules for deployment
 OPAQUE 3 software
 Figure of merit for PCM composites
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